Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

نویسندگان

  • Yeowool Huh
  • Jeiwon Cho
چکیده

Anesthetics are often used to characterize the activity of single neurons in vivo for their advantages such as reduction of noise level and convenience in noxious stimulations. Urethane has been a widely used anesthetic in thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested this assumption by comparing thalamic activity in terms of tonic and burst firing modes during "the awake state" or under "urethane anesthesia" using the extracellular single unit recording technique. We first tested how thalamic relay neurons respond to the introduction of urethane, and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over a 4 h recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Interaction between the Shell Sub-Region of the Nucleus Accumbens and the Ventral Tegmental Area in Response to Morphine: an Electrophysiological Study

This study has examined the functional importance of nucleus accumbens (NAc)-ventral tegmental area (VTA) interactions. As it is known, this interaction is important in associative reward processes. Under urethane anesthesia, extracellular single unit recordings of the shell sub-region of the nucleus accumbens (NAcSh) neurons were employed to determine the functional contributions of the VTA to...

متن کامل

Effect of aqueous extract of Drosera Spatulata on firing rate of paragigantocellularis nucleus neurons after pain induction by formalin in rats

Introduction: Previously, we demonstrated that i.p. injection of aqueous extract prepared from aerial parts of Drosera Spatulata (Droseraceae) can induced remarkable analgesia in both phases of formalin test in rats. Because, analgesia induced in acute phase of formalin test mainly mediated by activation of central analgesic mechanisms and also paragigantocellularis (PGi) nucleus is part of bra...

متن کامل

Specific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism

Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...

متن کامل

Involvement of the Cav3.2 T-type calcium channel in thalamic neuron discharge patterns

BACKGROUND Mice that have defects in their low-threshold T-type calcium channel (T-channel) genes show altered pain behaviors. The changes in the ratio of nociceptive neurons and the burst firing property of reticular thalamic (RT) and ventroposterior (VP) neurons in Cav3.2 knockout (KO) mice were studied to test the involvement of thalamic T-channel and burst firing activity in pain function. ...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013